3.12.79 \(\int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx\) [1179]

3.12.79.1 Optimal result
3.12.79.2 Mathematica [C] (verified)
3.12.79.3 Rubi [A] (verified)
3.12.79.4 Maple [B] (verified)
3.12.79.5 Fricas [F(-1)]
3.12.79.6 Sympy [F(-1)]
3.12.79.7 Maxima [F]
3.12.79.8 Giac [F(-1)]
3.12.79.9 Mupad [F(-1)]

3.12.79.1 Optimal result

Integrand size = 29, antiderivative size = 296 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}-\frac {2 \left (8 a^2-3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 a b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {2 \left (8 a^2-5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{3 b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{a d \sqrt {a+b \sin (c+d x)}} \]

output
-2*(a^2-b^2)*cos(d*x+c)/a/b^2/d/(a+b*sin(d*x+c))^(1/2)-2/3*cos(d*x+c)*(a+b 
*sin(d*x+c))^(1/2)/b^2/d+2/3*(8*a^2-3*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^( 
1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2) 
*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/a/b^3/d/((a+b*sin(d*x+c))/(a+b))^ 
(1/2)-2/3*(8*a^2-5*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4* 
Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*( 
(a+b*sin(d*x+c))/(a+b))^(1/2)/b^3/d/(a+b*sin(d*x+c))^(1/2)-2*(sin(1/2*c+1/ 
4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4* 
Pi+1/2*d*x),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/a/d/ 
(a+b*sin(d*x+c))^(1/2)
 
3.12.79.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.71 (sec) , antiderivative size = 419, normalized size of antiderivative = 1.42 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\frac {-\frac {2 i \left (-8 a^2+3 b^2\right ) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right ) \sec (c+d x) \sqrt {-\frac {b (-1+\sin (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sin (c+d x))}{a-b}}}{a b^2 \sqrt {-\frac {1}{a+b}}}+\frac {8 a b \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{\sqrt {a+b \sin (c+d x)}}+\frac {2 \left (8 a^2-9 b^2\right ) \operatorname {EllipticPi}\left (2,\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{\sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \left (4 a^2-3 b^2+a b \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}}}{6 a b^2 d} \]

input
Integrate[(Cos[c + d*x]^3*Cot[c + d*x])/(a + b*Sin[c + d*x])^(3/2),x]
 
output
(((-2*I)*(-8*a^2 + 3*b^2)*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^ 
(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*Ar 
cSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] + b* 
EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x 
]]], (a + b)/(a - b)]))*Sec[c + d*x]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b 
))]*Sqrt[-((b*(1 + Sin[c + d*x]))/(a - b))])/(a*b^2*Sqrt[-(a + b)^(-1)]) + 
 (8*a*b*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c 
+ d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]] + (2*(8*a^2 - 9*b^2)*EllipticPi 
[2, (-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b 
)])/Sqrt[a + b*Sin[c + d*x]] - (4*Cos[c + d*x]*(4*a^2 - 3*b^2 + a*b*Sin[c 
+ d*x]))/Sqrt[a + b*Sin[c + d*x]])/(6*a*b^2*d)
 
3.12.79.3 Rubi [A] (verified)

Time = 1.99 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.02, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.621, Rules used = {3042, 3371, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^4}{\sin (c+d x) (a+b \sin (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3371

\(\displaystyle \frac {4 \int \frac {\csc (c+d x) \left (3 b^2-2 a \sin (c+d x) b-\left (8 a^2-3 b^2\right ) \sin ^2(c+d x)\right )}{4 \sqrt {a+b \sin (c+d x)}}dx}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\csc (c+d x) \left (3 b^2-2 a \sin (c+d x) b-\left (8 a^2-3 b^2\right ) \sin ^2(c+d x)\right )}{\sqrt {a+b \sin (c+d x)}}dx}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 b^2-2 a \sin (c+d x) b-\left (8 a^2-3 b^2\right ) \sin (c+d x)^2}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {-\frac {\left (8 a^2-3 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}-\frac {\int -\frac {\csc (c+d x) \left (3 b^3+a \left (8 a^2-5 b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}}dx}{b}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {\csc (c+d x) \left (3 b^3+a \left (8 a^2-5 b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {\left (8 a^2-3 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 b^3+a \left (8 a^2-5 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {\left (8 a^2-3 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\int \frac {3 b^3+a \left (8 a^2-5 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {\left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 b^3+a \left (8 a^2-5 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {\left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {\int \frac {3 b^3+a \left (8 a^2-5 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {a \left (8 a^2-5 b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx+3 b^3 \int \frac {\csc (c+d x)}{\sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \left (8 a^2-5 b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx+3 b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {\frac {a \left (8 a^2-5 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+3 b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {a \left (8 a^2-5 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+3 b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {3 b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx+\frac {2 a \left (8 a^2-5 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {\frac {\frac {3 b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {\csc (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+\frac {2 a \left (8 a^2-5 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {3 b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sin (c+d x) \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+\frac {2 a \left (8 a^2-5 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

\(\Big \downarrow \) 3284

\(\displaystyle -\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{a b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {\frac {\frac {2 a \left (8 a^2-5 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}+\frac {6 b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}}{3 a b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 b^2 d}\)

input
Int[(Cos[c + d*x]^3*Cot[c + d*x])/(a + b*Sin[c + d*x])^(3/2),x]
 
output
(-2*(a^2 - b^2)*Cos[c + d*x])/(a*b^2*d*Sqrt[a + b*Sin[c + d*x]]) - (2*Cos[ 
c + d*x]*Sqrt[a + b*Sin[c + d*x]])/(3*b^2*d) + ((-2*(8*a^2 - 3*b^2)*Ellipt 
icE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(b*d*Sqrt 
[(a + b*Sin[c + d*x])/(a + b)]) + ((2*a*(8*a^2 - 5*b^2)*EllipticF[(c - Pi/ 
2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + 
 b*Sin[c + d*x]]) + (6*b^3*EllipticPi[2, (c - Pi/2 + d*x)/2, (2*b)/(a + b) 
]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c + d*x]]))/b)/(3* 
a*b^2)
 

3.12.79.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3371
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a^2 - b^2)*Cos[e + 
f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*b^2*d*f*(m + 
 1))), x] + (-Simp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 2)*((d*Sin[e + f* 
x])^(n + 1)/(b^2*d*f*(m + n + 4))), x] - Simp[1/(a*b^2*(m + 1)*(m + n + 4)) 
   Int[(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^n*Simp[a^2*(n + 1)*(n 
+ 3) - b^2*(m + n + 2)*(m + n + 4) + a*b*(m + 1)*Sin[e + f*x] - (a^2*(n + 2 
)*(n + 3) - b^2*(m + n + 3)*(m + n + 4))*Sin[e + f*x]^2, x], x], x]) /; Fre 
eQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && Lt 
Q[m, -1] &&  !LtQ[n, -1] && NeQ[m + n + 4, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
3.12.79.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1009\) vs. \(2(373)=746\).

Time = 1.32 (sec) , antiderivative size = 1010, normalized size of antiderivative = 3.41

method result size
default \(\text {Expression too large to display}\) \(1010\)

input
int(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE 
)
 
output
-2/3*(3*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-( 
1+sin(d*x+c))*b/(a-b))^(1/2)*b^4*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2) 
,(a-b)/a,((a-b)/(a+b))^(1/2))*a-3*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d* 
x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*b^5*EllipticPi(((a+ 
b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))+8*((a+b*sin(d*x+c) 
)/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^( 
1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b-6 
*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d 
*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b 
))^(1/2))*a^3*b^2-5*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b 
))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b) 
)^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^3+3*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(s 
in(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+ 
b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4-8*((a+b*sin(d*x+c))/ 
(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/ 
2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5+11*(( 
a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+ 
c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^ 
(1/2))*a^3*b^2-3*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^ 
(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b)...
 
3.12.79.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(3/2),x, algorithm="fri 
cas")
 
output
Timed out
 
3.12.79.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**3*cot(d*x+c)/(a+b*sin(d*x+c))**(3/2),x)
 
output
Timed out
 
3.12.79.7 Maxima [F]

\[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3} \cot \left (d x + c\right )}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(3/2),x, algorithm="max 
ima")
 
output
integrate(cos(d*x + c)^3*cot(d*x + c)/(b*sin(d*x + c) + a)^(3/2), x)
 
3.12.79.8 Giac [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(3/2),x, algorithm="gia 
c")
 
output
Timed out
 
3.12.79.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3\,\mathrm {cot}\left (c+d\,x\right )}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((cos(c + d*x)^3*cot(c + d*x))/(a + b*sin(c + d*x))^(3/2),x)
 
output
int((cos(c + d*x)^3*cot(c + d*x))/(a + b*sin(c + d*x))^(3/2), x)